
1

SPACEWARDUINO

Kaivan Wadia (Department of EECS) – Massachusetts Institute of Technology

Advisor: Prof. Philip Tan

ABSTRACT

Spacewar! was one of the first ever computer games developed in the early 1960s. Steve

Russell, Martin Graetz and Wayne Witaenem of the fictitious "Hingham Institute"

conceived of the game in 1961, with the intent of implementing it on a DEC PDP-1

computer at MIT. Alan Kotok obtained some sine and cosine routines from DEC

following which Steve Russell started coding and the first version was produced by

February 1962. Spacewar! was the first computer game written at MIT. In the duration of

this project we hope to implement the same game on an Arduino Microcontroller with a

Gameduino shield while examining the original assembly code and staying as true to the

original version of the game as possible.

2

TABLE OF CONTENTS

1. INTRODUCTION 3

2. UNDERSTANDING THE SOURCE CODE 4

3. VECTOR GRAPHICS AND SPACESHIPS 7

4. SPACEWAR! NIGHT SKY 9

5. THE ARDUINO/GAMEDUINO IMPLEMENTATION 11

6. CONCLUSION 13

7. REFERENCES 14

3

1. INTRODUCTION

The major aim of this project is to replicate the first computer game written at MIT,

Spacewar!. In the process we aim to learn a lot about the way video games were written

for the machines in the pioneering days of computing.

Spacewar! is game of space combat created for the DEC PDP-1 by hackers at MIT,

including Steve Russell, Martin Graetz, Wayne Witaenem, Alan Kotok, Dan Edwards,

and Peter Samson. The game can be played on a Java emulator at

http://spacewar.oversigma.com/. We also obtained the base version of the Spacewar! source

code which was written in assembly language for the DEC PDP-1. Our goal in this

project is to make a version of the game that runs on an Arduino microcontroller with a

Gameduino shield that we can demonstrate in the foyer of the GAMBIT Lab.

In the duration of this project we understood what's going on in the PDP-1 source code

that the emulators use. This has meant learning the PDP-1 assembly language MACRO

from old manuals written in 1962. These manuals were obtained from the bitsaver’s

archive[1] . We also got hold of a PDP-1 emulator through the Multiple Emulator Super

System[2][3]. The process itself has been slow as a lot of information is buried in the

technical documentation or is no longer available as it was assumed knowledge at that

point of time. It has also been amazing to go through the old manuals of the PDP-1 and

MACRO and understand and share the experience of those hackers back in the 60s.

http://spacewar.oversigma.com/

4

2. UNDERSTANDING THE SOURCE CODE

There isn’t much information of the Spacewar! source code available online. To

understand the source code we had to use the old PDP-1 and MACRO manuals[1]. It also

greatly helped to look at the compiled (processed) version of the source code so as to

compare it with the clean un-compiled (pre-processing) version and get the translation of

each instruction in machine code, which was very useful for understanding exactly what

is going and the layout of the memory. This in turn was very helpful in understanding the

low level manipulations performed by the code while running the game.

MACRO inlines all macro definitions. The MACRO equivalent of functions is called

macros. When we went through the source code we noticed that wherever a macro was

used in the source code the compiled version had gone through and expanded it out inline

by introducing temporary variables for each of the macro’s arguments. This explained

what all the labels starting with "ZZ" meant in the source code.

The numbers mentioned in the source code are all in octal. This took a long time to figure

out although we should have figured out much earlier. We were expecting it to be in

either decimal or hexadecimal but were surprised to find that the numbering was done in

the octal system which made a lot of sense once we discovered that the a word in

memory was 18 bits long instead of the usual power of 2.The only case in which the

assembler interprets a number as decimal is when the MACRO directive “decimal” has

been issued in a macro definition.

We also discovered that there was no stack in the PDP-1. As we were used to working at

C level of abstraction this was very confusing at first until we figured out that the macros

which look like functions get inlined when processed by the MACRO compiler.

Everything is just one big sequential amalgamation of data and instructions.

Labels are used both for naming variables and controlling flow. This was very hard for us

to wrap our heads around at first. As mentioned before, there is no separation in memory

between data and instructions. As a programmer you would have to make sure that you

5

never let the program counter point to a place in memory that contains data rather than an

instruction. The Spacewar! programmers commonly used a label to name an address in

memory that they want to jump the flow control to and they also used a label to refer to a

memory location that they were only going to store data in. As far as we can tell there is

no naming convention which distinguishes them. Sometimes data can be stored

immediately next to instructions in memory. However, the majority of the game object

data is stored in a big contiguous block of memory after the instructions, rather than

being completely interleaved.

Including the symbol "i" after an instruction makes it indirect. We never found an explicit

statement of this, but my teammate Owen Macindoe inferred it from looking at the

opcodes in the original source code. Indirect instructions take a memory address as an

argument which tells them where to find the real argument. This idiom is very commonly

used in Spacewar!

The parentheses define constants. MACRO automatically allocates some memory to hold

the constant, stores its value there, and then replaces the constant symbols with the

memory address of the constant. For instance when MACRO reads the instruction "lac

(4000" in the preprocessing phase, it causes some memory to be allocated, say address

047403, and then stores 4000 in that address, replacing the original instruction with "lac

047403". This is all done prior to execution.

One of the most frequently seen instructions was “dap”. The instruction "dap x" deposits

the accumulator contents into the argument portion of the memory address x. This lets

you change the argument of the instruction stored at that memory address. One of the

most common idioms that the Spacewar! programmers use is to manipulate the flow of

the program by writing "jmp .", which is a command that says "jump to this address"

(which would result in a tight infinite loop if it were actually execute) and then to use the

dap instruction to overwrite the target of the jump from "." to some other address that

they load into the accumulator. This makes it hard to look at the code and immediately

tell what the flow control is going to look like without tracing the execution, since you

need to know what the "." is going to be replaced by when the program is actually

running. They use a similar idiom for loading data, for example writing "lac ." which if

executed straight up would load the contents of the current address (i.e. the "lac ."

6

instruction itself) into the accumulator, but they then use dap to conditionally change the

target from "." to some other location that contains data that they want to operate on.

Spacewar! is written very close to the machine. The programmers have used a wide range

of bitwise manipulation tricks that are not often used in modern programming techniques.

They rotate bits in memory using bit-shifting so as to store two short numbers in space

normally used for one long number. Number representations are shifted around so that

they are in the left or right side of the memory address depending on where a particular

instruction call requires that it needs to be. This comes up quite frequently with the

display instruction “dpy”. They use MACRO to repeatedly double numbers in the

preprocessing stage so that they get bit-shifted to the location in memory that they want

before execution. They add together the bit codes of instructions to create combined

instructions. These tricks have not been commented very well in the source code and

were difficult to pick up and understand why they were being used. This required a lot of

poking around and playing with the emulator in order to figure out the use of these tricks.

7

3. VECTOR GRAPHICS AND SPACESHIPS

After understanding the basic workings of the Spacewar! source code and going through

the PDP-1 and MACRO manuals the first major block of code we tried to analyze was

the one that was drawing the game state, i.e. drawing the two spaceships. A section of

code had been marked by the comment “outlines of spaceship”, followed by two blocks

of code with the labels ot1 and ot2. This seemed to be the logical starting place to try and

understand how the “Wedge” and “Needle” were drawn in Spacewar!. The two blocks of

code just contained a sequence of numbers shown in the image below. Understanding

what these numbers meant was integral to figuring out how the spacehips were drawn.

To the naked eye these numbers seemed to be an encoding of some kind. The simplest

solution seemed to be that the numbers were a bitmap encoding of the spaceships. This

idea fell through as the numbers gave us nothing recognizable when used as a bitmap

encoding. Looking through past interviews with the developers of Spacewar! it became

apparent that the spaceships were drawn using vector graphics techniques. This led us to

the process of taking consecutive pairs of numbers as the X and Y coordinates of a series

of vectors that would be drawn one after the other. This technique also did not produce

any positive results putting us back at square one in terms of understanding the method

used to draw the game state.

8

On analyzing different sections of the code in hope of the answer to our problem we

came across a section of the code bearing the comment “outline compiler”. This portion

of the program was writing out machine instructions into an empty block of memory at

the end of the main program. Some of these instructions were display instructions giving

us evidence that this section of the code had something to do with the drawing of the

spaceships. Our next discovery was a section of the code that took the heading of a

spaceship and computed the sine and cosine of the heading. It stored linear combinations

of the result in memory. The same memory was being referenced by the code generated

by the “outline compiler”. This seemed to match the code that would be needed to

multiply vectors using a rotation matrix. We had finally come across the code which

controlled the rotation of the graphics coordinate system in Spacewar!.

Armed with the new found knowledge of the rotation algorithm used by Spacewar! we

used an excel spreadsheet to analyze the code in the outline compiler and track the

values of the variables used by that portion of the code as the program was executed.

After analyzing the code we realized that every octal digit in the outline’s encoding was

specifying a source code section to execute, and each of these source code sections wrote

new instructions into the memory. This newly generated code would later be executed

and result in displaying the ships on the screen. These instructions updated the drawing

location by moving it in one of 5 directions relative to the last point drawn. A sequence of

such instructions would result in the tracing of the outline of a spaceship in the game.

On gathering all this knowledge we decided to trace out the spaceships ourselves

following the code in the program. In doing so we were disappointed mid-way as it just

seemed to produce a straight line until it finally deviated and produces a diagonal line on

the screen. After going through the entire code step by step we realized that only half of

each spaceship’s outline was being encoded and that the other half was drawn by

reflecting the first half.

9

4. SPACEWAR! NIGHT SKY

After understanding the drawing of spaceships in Spacewar! we now moved our attention

to the star field background of the game and how it was drawn and controlled. The

Spacewar! star field is a view of the night sky as seen from MIT. The original code was

called Expensive Planetarium and was written by Peter Sampson between 1962 and

1963[4]. Originally the code was independent of the game but was later included in the

game to replace the random dots drawn as stars. The end section of the Spacewar! source

code was entirely made up of repeated instructions which called a macro “mark”. A

section of this code is shown in the image below.

The Spacewar! programmers came up with a macro (function in MACRO) called mark

which seemed to convert the star coordinates into a format that makes them easier to

process for displaying. The X and Y coordinates of a star were stored in the form of a

table in order of their X coordinates. Stars of similar brightness were grouped together in

the table. Each call to the macro mark was replaced with the inline code, substituting the

arguments for the X and Y coordinates for each star. The macro mark then multiplies the

Y coordinate by 2^8, which is equivalent to bit-shifting it left by 8 bits, but will be

performed before run time. Also the X coordinate is subtracted from 8192.

Looking at the values of the X and Y coordinates it came to our notice that while the Y

coordinates were in the range of -512 to +512 the X coordinates had a range from 0 to

8192. This seemed to be an odd manipulation till we analyzed the macro “dislis”. The

dislis macro takes the X and Y coordinates of a star after they have been put through the

macro mark and uses them to display a star. The Y coordinate is bit shifted by 8 as the

display instruction of the PDP-1 looks in the 0-9 bits of the accumulator and the IO

10

Register for the X and Y coordinates respectively. By bit shifting the Y coordinate it was

placed in the correct location needed by the display instruction.

The X coordinate was a little more tricky since certain stars would not be displayed

depending on which region of the night sky was visible. As mentioned before the stars

were ordered according to their X coordinates and the code went through the stars in the

same order. The source code kept track of where the right margin of the screen was in

respect to the world space and moved it along in the game loop. After subtracting the X

coordinate from 8192 the dislis macro examined the X coordinate to see whether it was in

the viewable portion of the screen. If it was in the viewable portion it converted the X

coordinate from the world space to the screen space in and placed it in the 0-9 bits of the

accumulator. Upon encountering a star whose X coordinate was not in the screen space it

exited the loop and moved to the next block of stars. The ordering of stars in this manner

ensured that unnecessary computation was avoided.

After figuring out how the star field was drawn in the game we used the information to

implement it in the game we were creating on the Arduino/Gameduino combination. The

device we used did not have the same screen size, but after obtaining the original

coordinate system it was easy to convert it to make it work for the display that we were

going to be using.

11

5. THE ARDUINO/GAMEDUINO IMPLEMENTATION

After figuring out the manner in which the star field and spaceships were drawn in

Spacewar! we sat down to discuss as to how we wanted to implement the same in our

version of the game. We first had to go through the Arduino and Gameduino reference

manuals in order to understand the workings and capabilities of the two devices[5][6]. The

Gameduino itself has the technical capabilities of a scrolling background using a bitmap

image[7] and also the possibility of using sprites and the Gameduino sprite collision

mechanism for detecting collisions between the torpedos and the spaceships[8]. The

decision to be made was whether to stay true to the original code or use the technical

capabilities offered by the Gameduino and make the code easier to implement. Also the

processing capabilities of the Arduino were one of the main considerations while

deciding the manner in which we would implement the star field and spaceships.

Regarding the star field we decided that we would stay true to the source code and

display each star individually rather than use the scrolling background offered by the

Gameduino. We did this by creating our own artificial margins to set the portion of the

screen that is viewable and individually checked whether a star was present in this region

and print it if it was. The Gameduino did not offer any brightness controls so we had to

use different colored sprite to implement the brightness of the various stars, white being

the brightest and grey being the dullest.

Each individual star printed on the screen was designated its own individual sprite control

word to control the star and its movement across the screen. This led to a few problems as

we did not have enough sprite control words to print all the stars that were in the

viewable region at a given point of time. To solve this problem we extended the star field

space by a factor of 2 so as to have fewer stars being displayed at a single point of time.

This worked well and also turned out to be a much better representation of the original

star field as there were not many stars displayed at a single point of time in the original

game either.

The next decision which we had to make was whether to implement the spaceships using

the original code, i.e. using vector graphics techniques, or use the sprite capabilities of the

12

Gameduino. The problem of implementing the spaceships using vector graphics

techniques was that it would take up a lot of the computational capabilities offered by the

Arduino and would no longer be efficient. Also the collision detection mechanism would

have to be hand written and would be equally computationally heavy. Besides one of the

main advantages of using the Gameduino is its pixel perfect collision detection

mechanism which we wanted to incorporate into the final version of the game. Therefore,

we decided to use two individual sprites for each of the spaceships and use the collision

detection mechanism of the Gameduino for detecting collisions.

The second problem was the rotation of the spaceships. The Gameduino has an in-built

sprite rotation algorithm which is very effective and precise [9]. The problem though was

that we were using two sprites as one spaceship and the rotation algorithm rotated one

sprite at a time. This led us to come up with an algorithm which used the rotation

mechanism of the Gameduino for the first sprite and compute an offset to place the

second sprite and rotate it accordingly. Also in the original game the spaceships rotated

around their noses whereas the Gameduino rotation algorithm rotated the spaceships

around their centers. This problem was overcome by using two individual sprites to

define each spaceship rather than a single sprite for each of the spaceship. In this manner

we could draw them together and rotate the two sprites about their centers to create the

illusion of them rotating around their noses.

13

6. CONCLUSION

The Arduino/Gameduino implementation of Spacewar! on the whole has been a

fascinating experience. The programming style in the original source code is one that we

haven’t seen before and portrays the difficulties faced by the programmers in the early

days of computing.

There is still a lot of work yet to be done in terms of going through the source code and

figuring out the different mechanics the original game used. There are various features in

the game which can be turned on and off by controlling the switches of the PDP-1. For

example, the gravity of the star can be turned off along with the star field.

The game as a whole still need to be implemented but the fact that we have understood

some of the most important characteristics of the original game such as the drawing of

spaceships and stars is very important in the implementation of the game. The design

decisions taken by the team in regard to the implementation for the various game

mechanics has also made the process of implementing the game faster and easier.

On the whole I have got a lot of hands on experience on coding with the

Arduino/Gameduino in the duration of this project. I have also learnt the extensive

capabilities of the Arduino/Gameduino hardware. The analyzing of the original source

code has helped me immensely to understand the working of a computer from a machine

level point of view and the difficulties as well as advantages of assembly code. Finally,

the completion of the project will be a testament to the fact that gaming has been and will

always be a part of MIT’s culture.

14

7. REFERENCES

1. PDP-1 and MACRO manuals available through the Bitsaver’s archive,

http://www.bitsavers.org/pdf/dec/pdp1/

2. Multiple Emulator Super System (MESS) to emulate the PDP-1, http://www.mess.org/

3. Spacewar.rim file to be loaded on the PDP-1 to emulate the game,

http://www.computerspacefan.com/SpaceWarSim.htm

4. Expensive Planetarium source code, http://en.wikipedia.org/wiki/Expensive_Planetarium

5. Arduino technical reference, http://www.arduino.cc/

6. Gameduino technical reference, http://excamera.com/sphinx/gameduino/

7. Gameduino scrolling background,

http://excamera.com/sphinx/gameduino/samples/scroll/index.html

8. Gameduino sprite collision mechanism,

http://excamera.com/sphinx/gameduino/samples/collision/index.html

9. Gameduino sprite rotation algorithm,

http://excamera.com/sphinx/gameduino/samples/rotate/index.html

http://www.bitsavers.org/pdf/dec/pdp1/
http://www.mess.org/
http://www.computerspacefan.com/SpaceWarSim.htm
http://en.wikipedia.org/wiki/Expensive_Planetarium
http://www.arduino.cc/
http://excamera.com/sphinx/gameduino/
http://excamera.com/sphinx/gameduino/samples/scroll/index.html
http://excamera.com/sphinx/gameduino/samples/collision/index.html
http://excamera.com/sphinx/gameduino/samples/rotate/index.html

